Feature Selection and Ranking

نویسنده

  • Boris Igelnik
چکیده

This chapter describes a method of feature selection and ranking based on human expert knowledge and training and testing of a neural network. Being computationally efficient, the method is less sensitive to round-off errors and noise in the data than the traditional methods of feature selection and ranking grounded on the sensitivity analysis. The method may lead to a significant reduction of a search space in the tasks of modeling, optimization, and data fusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

IFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF

Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...

متن کامل

RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features

Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...

متن کامل

Selection of Favorite Reusable Launch Vehicle Concepts by using the Method of Pairwise Comparison

The contribution of this paper to the space transportation system field is to select promising Reusable Launch Vehicle (RLV) concepts by using a formal evaluation procedure. The vehicle system is divided into design features. Every design feature can have alternative characteristics. All combinations of design features and characteristics are compared pairwise with each other. The innovation an...

متن کامل

Single Feature Ranking and Binary Particle Swarm Optimisation Based Feature Subset Ranking for Feature Selection

This paper proposes two wrapper based feature selection approaches, which are single feature ranking and binary particle swarm optimisation (BPSO) based feature subset ranking. In the first approach, individual features are ranked according to the classification accuracy so that feature selection can be accomplished by using only a few top-ranked features for classification. In the second appro...

متن کامل

Feature Selection on Heterogeneous Graph

Heterogeneous graph based information recommendation have been proved useful in recent studies. Given a heterogeneous graph scheme, there are many possible meta paths between the query node and the result node, and each meta path addresses a hypothesis-based ranking function. In prior researches, meta paths are manually selected by domain experts. However, when the graph scheme becomes complex,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016